Inverse design in quantum nanophotonics: combining local-density-of-states and deep learning

Author:

Liu Guang-Xin1,Liu Jing-Feng1,Zhou Wen-Jie2,Li Ling-Yan1,You Chun-Lian1,Qiu Cheng-Wei3,Wu Lin24ORCID

Affiliation:

1. College of Electronic Engineering and College of Artificial Intelligence , South China Agricultural University , Guangzhou 510642 , China

2. Science, Mathematics and Technology (SMT) , Singapore University of Technology and Design (SUTD) , 8 Somapah Road , Singapore 487372 , Singapore

3. Department of Electrical and Computer Engineering , National University of Singapore , 4 Engineering Drive 3 , Singapore 117583 , Singapore

4. Agency for Science, Technology, and Research (A*STAR) , Institute of High Performance Computing , Singapore 138632 , Singapore

Abstract

Abstract Recent advances in inverse-design approaches for discovering optical structures based on desired functional characteristics have reshaped the landscape of nanophotonic structures, where most studies have focused on how light interacts with nanophotonic structures only. When quantum emitters (QEs), such as atoms, molecules, and quantum dots, are introduced to couple to the nanophotonic structures, the light–matter interactions become much more complicated, forming a rapidly developing field – quantum nanophotonics. Typical quantum functional characteristics depend on the intrinsic properties of the QE and its electromagnetic environment created by the nanophotonic structures, commonly represented by a scalar quantity, local-density-of-states (LDOS). In this work, we introduce a generalized inverse-design framework in quantum nanophotonics by taking LDOS as the bridge to connect the nanophotonic structures and the quantum functional characteristics. We take a simple system consisting of QEs sitting on a single multilayer shell–metal–nanoparticle (SMNP) as an example, apply fully-connected neural networks to model the LDOS of SMNP, inversely design and optimize the geometry of the SMNP based on LDOS, and realize desirable quantum characteristics in two quantum nanophotonic problems: spontaneous emission and entanglement. Our work introduces deep learning to the quantum optics domain for advancing quantum device designs; and provides a new platform for practicing deep learning to design nanophotonic structures for complex problems without a direct link between structures and functional characteristics.

Funder

China Scholarship Council

National Natural Science Foundation of China

National Research Foundation Singapore

Singapore University of Technology and Design

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3