Programmable optical meta-holograms

Author:

Zhang Jing Cheng1,Fan Yubin1,Yao Jin1,Chen Mu Ku123,Lin Shirong1,Liang Yao1ORCID,Leng Borui1,Tsai Din Ping123ORCID

Affiliation:

1. Department of Electrical Engineering , City University of Hong Kong, Kowloon , Hong Kong SAR , China

2. State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon , Hong Kong SAR , China

3. Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon , Hong Kong SAR , China

Abstract

Abstract The metaverse has captured significant attention as it provides a virtual realm that cannot be experienced in the physical world. Programmable optical holograms, integral components of the metaverse, allow users to access diverse information without needing external equipment. Meta-devices composed of artificially customized nano-antennas are excellent candidates for programmable optical holograms due to their compact footprint and flexible electromagnetic manipulation. Programmable optical meta-holograms can dynamically alter reconstructed images in real-time by directly modulating the optical properties of the metasurface or by modifying the incident light. Information can be encoded across multiple channels and freely selected through switchable functionality. These advantages will broaden the range of virtual scenarios in the metaverse, facilitating further development and practical applications. This review concentrates on recent advancements in the fundamentals and applications of programmable optical meta-holograms. We aim to provide readers with general knowledge and potential inspiration for applying programmable optical meta-holograms, both intrinsic and external ways, into the metaverse for better performance. An outlook and perspective on the challenges and prospects in these rapidly growing research areas are provided.

Funder

the University Grants Committee / Research Grants Council of the Hong Kong Special Administrative Region, China

the Department of Science and Technology of Guangdong Province

City University of Hong Kong

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3