Chip-scale integrated holographic devices based on top-emitting vertical cavity surface emitting lasers

Author:

Pan Guanzhong1ORCID,Xun Meng1,Sun Yun1,Dong Yibo23,Wu Dexin

Affiliation:

1. University of Chinese Academy of Sciences

2. University of Shanghai for Science and Technology

3. Institute of Photonic Chips, University of Shanghai for Science and Technology

Abstract

Holography technology is considered the ultimate three-dimensional (3D) visualization technology in the future. However, conventional methods for achieving holography generally utilize discrete optical components and off-chip laser sources, resulting in a large size and high complexity, which are undesirable for practical applications. In this Letter, chip-scale integrated holographic devices are realized by integrating top-emitting vertical cavity surface emitting lasers (VCSELs) with micro holograms printed by 3D femtosecond laser nanoprinting technology. The VCSELs are designed to operate in a single fundamental mode with a Gaussian emission profile. Then the Gaussian beams are phase-modulated by the integrated micro holograms designed by the Gerchberg–Saxton (GS) algorithm and the target holographic images can be displayed behind the holograms. Such integrated holographic devices are of micron size and can be easily scaled into arrays with arbitrary channels on-demand, which are important for achieving miniaturized and portable holographic imaging systems.

Funder

Frontiers Science Center for Shanghai Municipality

Science and Technology Commission of Shanghai Municipality

Shanghai Sailing Program

National Key Research and Development Program of China

Beijing Nova Program

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Key Research Program of Frontier Science, Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3