Beyond-hot-spot absorption enhancement on top of terahertz nanotrenches

Author:

Jeong Jeeyoon1ORCID,Kim Dai-Sik23ORCID,Park Hyeong-Ryeol3ORCID

Affiliation:

1. Department of Physics and Institute of Quantum Convergence Technology , Kangwon National University , Gangwon 24341 , Republic of Korea

2. Department of Physics and Astronomy , Seoul National University , Seoul 08826 , Republic of Korea

3. Department of Physics , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea

Abstract

Abstract Metallic nanogaps are being widely used for sensing applications, owing to their ability to confine and enhance electromagnetic field within the hot spots. Since the enhanced field does not confine itself perfectly within the gap, however, fringe fields well away from the gap are of potential use as well in real systems. Here, we extend the concept of near field absorption enhancement by quantitatively analyzing terahertz absorption behavior of water molecules outside the hot spots of sub-20 nm-wide, ∼100 μm-long nanotrenches. Contrary to point-gaps which show negligible field enhancement at distances larger than the gap width, our extended nanogap act as a line source, incorporating significant amount of absorption enhancement at much longer distances. We observe absorption enhancement factors of up to 3600 on top of a 5 nm-wide gap, and still well over 300 at 15 nm away. The finding is well supported by theoretical analyses including modal expansion calculations, Kirchhoff integral formalism and antenna theory. Our results provide means to quantitatively analyze light-matter interactions beyond the hot spot picture and enable application of nanogaps for sensitive surface analyses of various material systems.

Funder

Ulsan National Institute of Science and Technology

Kangwon National University

National Research Foundation of Korea

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3