Charge transfer and electromagnetic enhancement processes revealed in the SERS and TERS of a CoPc thin film

Author:

Chen Yu-Ting1,Pan Lin12,Horneber Anke1,van den Berg Marius1,Miao Peng13,Xu Ping3,Adam Pierre-Michel2,Meixner Alfred J.4,Zhang Dai4

Affiliation:

1. Institute of Physical and Theoretical Chemistry, Eberhard Karls University of Tübingen and LISA+, Tübingen, Germany

2. Light, Nanomaterials and Nanotechnologies (L2n), Institut Charles Delaunay, CNRS, Université de Technologie de Troyes, Troyes, France

3. MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China

4. Institute of Physical and Theoretical Chemistry, Eberhard Karls University of Tübingen and LISA+, 72076 Tübingen, Germany

Abstract

AbstractPhthalocyanines are frequently used as probing molecules in the field of single-molecule surface-enhanced Raman spectroscopy (SERS) and tip-enhanced Raman spectroscopy (TERS). In this work, we systematically compare the SERS and TERS spectra from a thin cobalt phthalocyanine (CoPc) film that is deposited on a Au film. The contributions from electromagnetic (EM), resonance, and charge-transfer enhancements are discussed. Radially and azimuthally polarized vector beams are used to investigate the influences of molecular orientation and the localized surface plasmon resonance (SPR). Furthermore, two different excitation wavelengths (636 and 532 nm) are used to study the resonant excitation effect as well as the involvement of the charge-transfer processes between CoPc and the Au substrate. It is shown that the Raman peaks of CoPc are mostly enhanced by 636 nm excitation through a combination of resonant excitation, high EM enhancement, and chemical enhancement via charge transfer from the metal to the molecule. At 532 nm excitation, however, the SERS and TERS spectra are dominated by photoluminescence, which originates from a photo-induced charge-transfer process from the optically excited molecule to the metal. The contributions of the different enhancement mechanisms explain the optical contrasts seen in the TERS images of Au nanodisks covered by the CoPc film. The insight achieved in this work will help to understand the optical contrast in sub- or single-molecule TERS imaging and apply SERS or TERS in the field of photocatalysis.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3