SDM transmission of orbital angular momentum mode channels over a multi-ring-core fibre

Author:

Zhang Jingxing1,Lin Zhongzheng1,Liu Jie1ORCID,Liu Junyi1,Lin Zhenrui1,Mo Shuqi1,Lin Shuqing1,Shen Lei2,Zhang Lei2,Chen Yujie1,Lan Xiaobo2,Yu Siyuan1

Affiliation:

1. State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University , Guangzhou 510006 , China

2. State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Yangtze Optical Fiber and Cable Joint Stock Limited Company , Wuhan 430073 , China

Abstract

Abstract Spatial division multiplexed optical transmission over a multi-ring-core orbital angular momentum (OAM) fibre is reported for the first time. The seven cores in the fibre each supports OAM modes belonging to mode groups (MGs) of topological charge |l| = 0–4. The MGs of |l| = 1–4 each contains four near-degenerate OAM modes that carry the combinations of opposite orbital and spin angular momenta. The weak coupling between these higher-order MGs as well as between the cores enables the simultaneous transmission of 56 OAM mode channels (two MGs per core of the topological charges |l| = 2 and 3) over the 60-km span, while only requiring modular 4 × 4 multi-input multi-output (MIMO) signal processing to equalize the mixing among the four mode channels in each MG that are strongly coupled – a feature that also minimizes the number of filter taps. The mode channels are launched using seven-core single-mode fibre fan-in devices, with the light in all seven cores converted into OAM modes via specially designed plates that carry seven off-axis-compensated phase masks matching the hexagonal configuration of the multi-core fibres. Each mode channel carries 10 WDM wavelengths, equivalently aggregating to a capacity of 31.4 Tbit/s (net 25.1 Tb/s) and a spectral efficiency (SE) of 62.7 bit/s/Hz (net 50.2 bit/s/Hz) with 28-GBaud QPSK modulation per data channel.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3