Toward a mechanistic understanding of plasmon-mediated photocatalysis

Author:

Brooks James L.1,Warkentin Christopher L.1,Saha Dayeeta1,Keller Emily L.1,Frontiera Renee R.1

Affiliation:

1. Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA

Abstract

AbstractOne of the most exciting new developments in the plasmonic nanomaterials field is the discovery of their ability to mediate a number of photocatalytic reactions. Since the initial prediction of driving chemical reactions with plasmons in the 1980s, the field has rapidly expanded in recent years, demonstrating the ability of plasmons to drive chemical reactions, such as water splitting, ammonia generation, and CO2 reduction, among many other examples. Unfortunately, the efficiencies of these processes are currently suboptimal for practical widespread applications. The limitations in recorded outputs can be linked to the current lack of a knowledge pertaining to mechanisms of the partitioning of plasmonic energy after photoexcitation. Providing a descriptive and quantitative mechanism of the processes involved in driving plasmon-induced photochemical reactions, starting at the initial plasmon excitation, followed by hot carrier generation, energy transfer, and thermal effects, is critical for the advancement of the field as a whole. Here, we provide a mechanistic perspective on plasmonic photocatalysis by reviewing select experimental approaches. We focus on spectroscopic and electrochemical techniques that provide molecular-scale information on the processes that occur in the coupled molecular-plasmonic system after photoexcitation. To conclude, we evaluate several promising techniques for future applications in elucidating the mechanism of plasmon-mediated photocatalysis.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3