Optically driven plasmons in graphene/hBN van der Waals heterostructures: simulating s-SNOM measurements

Author:

Golenić Neven12ORCID,de Gironcoli Stefano23ORCID,Despoja Vito45ORCID

Affiliation:

1. Department of Physics , University of Zagreb , Bijenička 32, 10000 , Zagreb , Croatia

2. 19040 Scuola Internazionale Superiore di Studi Avanzati (SISSA) , Via Bonomea 265, 34136 Trieste , Italy

3. CNR-IOM DEMOCRITOS, Istituto Officina dei Materiali , Trieste , Italy

4. Centre for Advanced Laser Techniques , Institute of Physics , Bijenička 46, 10000 Zagreb , Croatia

5. Donostia International Physics Center (DIPC) , P. Manuel de Lardizabal, 4, 20018 San Sebastián , Spain

Abstract

Abstract Converting transverse photons into longitudinal two-dimensional plasmon-–polaritons (2D-PP) and vice versa presents a significant challenge within the fields of photonics and plasmonics. Therefore, understanding the mechanism which increases the photon – 2D-PP conversion efficiency could significantly contribute to those efforts. In this study, we theoretically examine how efficiently incident radiation, when scattered by a silver spherical nanoparticle (Ag-NP), can be transformed into 2D-PP within van der Waals (vdW) heterostructures composed of hexagonal boron nitride and graphene (hBN/Gr composites). We show that the Dirac plasmon (DP) excitation efficiency depends on the Ag-NP radius as R 3, and decreases exponentially with Ag-NP height h, so that for a certain Ag-NP geometry up to 25 % of the incident electrical field is channeled into the DP. We demonstrate that the linear plasmons (LPs) excitation efficiency can be manipulated by changing the graphene–graphene distance Δ (or hBN thickness) or by changing the number of graphene layers N. By increasing Δ and/or N the LPs move towards smaller wave vectors Q and become accessible by the Ag-NP dipole field, so that for N ≥ 5 the excitation of more than one LP is possible. These results are supported by recent scattering-type scanning near-field optical microscopy (s-SNOM) measurements. Furthermore, we show that Ag-NPs with specific parameters preferentially hybridizes with DPs of a particular wavelength λ D , facilitating selective excitation of DPs. The obtained tuning possibilities could have a significant impact on applied plasmonics, photonics or optoelectronics.

Funder

European Regional Development Fund

Horizon 2020 Framework Programme

Hrvatska Zaklada za Znanost

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3