Extraordinary optical transmission and second harmonic generation in sub–10-nm plasmonic coaxial aperture

Author:

Lee Jaehak12ORCID,Yang Suyeon13,Lee Jihye4,Choi Jun-Hyuk4,Lee Yong-Hee1,Shin Jung H.15,Seo Min-Kyo1ORCID

Affiliation:

1. Department of Physics , Korea Advanced Institute of Science and Technology , Daejeon 34141 , Republic of Korea

2. Division of National Supercomputing , Korea Institute of Science and Technology Information , Daejeon 34141 , Republic of Korea

3. Current address: Department of Physics, Wageningen University and Research Centre , Droevendaalsesteeg 4, 6708 PB Wageningen , the Netherlands

4. Nanomechanical Systems Research Division , Korea Institute of Machinery and Materials , Daejeon 34103 , Republic of Korea

5. Graduate School of Nanoscience and Technology , Korea Advanced Institute of Science and Technology , Daejeon 34141 , Republic of Korea

Abstract

Abstract Recent development in nanofabrication technology has enabled the fabrication of plasmonic nanoapertures that can provide strong field concentrations beyond the diffraction limit. Further utilization of plasmonic nanoaperture requires the broadband tuning of the operating wavelength and precise control of aperture geometry. Here, we present a novel plasmonic coaxial aperture that can support resonant extraordinary optical transmission (EOT) with a peak transmittance of ~10% and a wide tuning range over a few hundred nanometers. Because of the shadow deposition process, we could precisely control the gap size of the coaxial aperture down to the sub–10-nm scale. The plasmonic resonance of the SiNx/Au disk at the center of the coaxial aperture efficiently funnels the incident light into the sub–10-nm gap and allows strong electric field confinement for efficient second harmonic generation (SHG), as well as EOT. In addition to the experiment, we theoretically investigated the modal properties of the plasmonic coaxial aperture depending on the structural parameters and correlation between EOT and SHG through finite-difference time-domain simulations. We believe that our plasmonic coaxial apertures, which are readily fabricated by the nanoimprinting process, can be a versatile, practical platform for enhanced light–matter interaction and its nonlinear optical applications.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3