Super-resolution optical microscopy using cylindrical vector beams

Author:

Liu Min12ORCID,Lei Yunze1,Yu Lan1,Fang Xiang1,Ma Ying1,Liu Lixin3,Zheng Juanjuan1,Gao Peng1

Affiliation:

1. School of Physics , Xidian University , Xi’an 710071 , China

2. Guangzhou Institute of Technology, Xidian University , Guangzhou 510555 , China

3. School of Optoelectronic Engineering , Xidian University , Xi’an 710071 , China

Abstract

Abstract Super-resolution optical microscopy, which gives access to finer details of objects, is highly desired for fields of nanomaterial, nanobiology, nanophotonics, etc. Many efforts, including tip optimization and illumination optimization etc., have been made in both near-field and far-field super-resolution microscopy to achieve a spatial resolution beyond the diffraction limit. The development of vector light fields opens up a new avenue for super-resolution optical microscopy via special illumination modes. Cylindrical vector beam (CVB) has been verified to enable resolution improvement in tip-scanning imaging, nonlinear imaging, stimulated emission depletion (STED) microscopy, subtraction imaging, superoscillation imaging, etc. This paper reviews recent advances in CVB-based super-resolution imaging. We start with an introduction of the fundamentals and properties of CVB. Next, strategies for CVB based super-resolution imaging are discussed, which are mainly implemented by tight focusing, depletion effect, plasmonic nanofocusing, and polarization matching. Then, the roadmap of super-resolution imaging with CVB illumination in the past two decades is summarized. The typical CVB-based imaging techniques in fields of both near-field and far-field microscopy are introduced, including tip-scanning imaging, nonlinear imaging, STED, subtraction imaging, and superoscillation imaging. Finally, challenges and future directions of CVB-illuminated super-resolution imaging techniques are discussed.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3