Multipolar and bulk modes: fundamentals of single-particle plasmonics through the advances in electron and photon techniques

Author:

Tsoulos Ted V.1,Batson Philip E.2,Fabris Laura3ORCID

Affiliation:

1. Ecole Polytechnique Federale de Lausanne , Lausanne , VD , Switzerland

2. Rutgers University , Piscataway , New Jersey , USA

3. Materials Science and Engineering , Rutgers University , 607 Taylor Rd , Piscataway , New Jersey 08854 , USA

Abstract

Abstract Recent developments in the application of plasmonic nanoparticles have showcased the importance of understanding in detail their plasmonic resonances at the single-particle level. These resonances can be excited and probed through various methods, which can be grouped in four categories, depending on whether excitation and detection involve electrons (electron energy loss spectroscopy), photons (e.g., dark-field microscopy), or both (cathodoluminescence and photon-induced near-field electron microscopy). While both photon-based and electron-based methods have made great strides toward deepening our understanding of known plasmonic properties and discovering new ones, they have in general progressed in parallel, without much cross-pollination. This evolution can be primarily attributed to the different theoretical approaches driving these techniques, mainly dictated by the inherent different nature of electrons and photons. The discrepancies that still exist among them have hampered the development of a holistic approach to the characterization of plasmonic materials. In this review therefore, we aim to briefly present those electron-based and photon-based methods fundamental to the study of plasmonic properties at the single-particle level, with an eye to new behaviors involving multipolar, propagating, and bulk modes coexisting in colloidal nanostructures. By exploring the key fundamental discoveries in nanoparticle plasmonics achieved with these techniques, herein we assess how integrating this information could encourage the creation of a unified understanding of the various phenomena occurring in individual nanoparticles, which would benefit the plasmonics and electron microscopy communities alike.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3