Spin-dependent phenomena at chiral temporal interfaces

Author:

Mostafa Mohamed Hesham Mohamed1ORCID,Mirmoosa Mohammad S.1ORCID,Tretyakov Sergei A.1

Affiliation:

1. Department of Electronics and Nanoengineering , Aalto University , Espoo , Finland

Abstract

Abstract Temporally varying electromagnetic media have been extensively investigated recently to unveil new means for controlling light. However, spin-dependent phenomena in such media have not been explored thoroughly. Here, we reveal the existence of spin-dependent phenomena at a temporal interface between chiral and dielectric media. In particular, we show theoretically and numerically that due to the material discontinuity in time, linearly polarized light is split into forward-propagating right-handed and left-handed circularly polarized waves having different angular frequencies and the same phase velocities. This salient effect allows complete temporal separation of the two spin states of light with high efficiency. In addition, a phenomenon of spin-dependent gain/loss is observed. Furthermore, we show that when the dielectric medium is switched back to the original chiral medium, the right- and left-handed circularly polarized light waves (with different angular frequencies) merge to form a linearly polarized wave. Our findings extend spin-dependent interactions of light from space to space-time.

Funder

Academy of Finland

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Direction-Dependent Wave Transformations in Switched Artificial Moving Media;2023 Seventeenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials);2023-09-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3