Lasing at the nanoscale: coherent emission of surface plasmons by an electrically driven nanolaser
Author:
Fedyanin Dmitry Yu.1ORCID, Krasavin Alexey V.2ORCID, Arsenin Aleksey V.1ORCID, Zayats Anatoly V.2ORCID
Affiliation:
1. Laboratory of Nanooptics and Plasmonics, Center for Photonics and 2D Materials , Moscow Institute of Physics and Technology , 9 Institutsky Lane , Dolgoprudny 141700 , Russian Federation 2. Department of Physics and London Centre for Nanotechnology , King’s College London , Strand, London WC2R 2LS , UK
Abstract
Abstract
Plasmonics offers a unique opportunity to break the diffraction limit of light and bring photonic devices to the nanoscale. As the most prominent example, an integrated nanolaser is a key to truly nanoscale photonic circuits required for optical communication, sensing applications and high-density data storage. Here, we develop a concept of an electrically driven subwavelength surface-plasmon-polariton nanolaser, which is based on a novel amplification scheme, with all linear dimensions smaller than the operational free-space wavelength λ and a mode volume of under λ
3/30. The proposed pumping approach is based on a double-heterostructure tunneling Schottky barrier diode and gives the possibility to reduce the physical size of the device and ensure in-plane emission so that the nanolaser output can be naturally coupled to a plasmonic or nanophotonic waveguide circuitry. With the high energy efficiency (8% at 300 K and 37% at 150 K), the output power of up to 100 μW and the ability to operate at room temperature, the proposed surface plasmon polariton nanolaser opens up new avenues in diverse application areas, ranging from ultrawideband optical communication on a chip to low-power nonlinear photonics, coherent nanospectroscopy, and single-molecule biosensing.
Funder
Ministry of Science and Higher Education of the Russian Federation Russian Science Foundation Russian Foundation for Basic Research Engineering and Physical Sciences Research Council
Publisher
Walter de Gruyter GmbH
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology
Reference65 articles.
1. K. C. Y. Huang, M.-K. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nat. Photonics, vol. 8, pp. 244–249, 2014, https://doi.org/10.1038/nphoton.2014.2. 2. P. Wang, A. V. Krasavin, M. E. Nasir, W. Dickson, and A. V. Zayats, “Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials,” Nat. Nanotechnol., vol. 13, pp. 159–165, 2018, https://doi.org/10.1038/s41565-017-0017-7. 3. B. C. Stipe, T. C. Strand, C. C. Poon, et al., “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics, vol. 4, pp. 484–488, 2010, https://doi.org/10.1038/nphoton.2010.90. 4. P. Wang, M. E. Nasir, A. V. Krasavin, W. Dickson, and A. V. Zayats, “Optoelectronic synapses based on hot-electron-induced chemical processes,” Nano Lett., vol. 20, pp. 1536–1541, 2020, https://doi.org/10.1021/acs.nanolett.9b03871. 5. W. Heni, Y. Fedoryshyn, B. Baeuerle, et al., “Plasmonic IQ modulators with attojoule per bit electrical energy consumption,” Nat. Commun., vol. 10, no. 8, p. 1694, 2019, https://doi.org/10.1038/s41467-019-09724-7.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|