Plasmonic tuning of nano-antennas for super-gain light amplification

Author:

Aşırım Özüm EmreORCID,Kuzuoğlu Mustafa

Abstract

Abstract Nanoscale conductive materials are often used for inducing localized free electron oscillations known as plasmons. This is due to their high electronic excitability under optical irradiation owing to their super-small volume. Recently, plasmons have been of interest for enhancing the gain-bandwidth product of optical amplifiers. There are currently two well-established mechanisms for light amplification. The first one is via stimulated emission of radiation (lasers) using a given energy source and often an optical feedback mechanism. The second one is based on the nonlinear coupling of a low-intensity input wave and a high-intensity pump wave for energy exchange (parametric amplifiers). Both techniques have shortcomings. Lasers have a small operation bandwidth and offer a limited gain, but require moderate energy pumping to operate. Whereas optical parametric amplifiers (OPAs) offer a high operation bandwidth along with a much higher optical gain, with the drawback of requiring intense pumping to be functional. The aim of this paper is to introduce a technique that combines the advantages and eliminates the drawbacks of both techniques in the nanoscale to allow for a better amplification performance in integrated optical devices. This is achieved by inducing a plasmonic chirp in conductive nanomaterials a.k.a nano-antennas, which enables the confinement of an enormous electric energy density that can be coupled to an input beam for amplification. Using the Finite Difference Time Domain numerical-method with the material parameters of well-known semiconductors, intramaterial condensation of electric energy density is observed in semiconductor nano-antennas for certain plasmonic chirp-frequencies which enables broadband high-gain optical amplification based on free-electron oscillations that is promising for small-scale optical devices requiring a high gain-bandwidth product. The results are in good agreement with semiempirical data.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3