The road to atomically thin metasurface optics

Author:

Brongersma Mark L.1

Affiliation:

1. Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305, USA

Abstract

AbstractThe development of flat optics has taken the world by storm. The initial mission was to try and replace conventional optical elements by thinner, lightweight equivalents. However, while developing this technology and learning about its strengths and limitations, researchers have identified a myriad of exciting new opportunities. It is therefore a great moment to explore where flat optics can really make a difference and what materials and building blocks are needed to make further progress. Building on its strengths, flat optics is bound to impact computational imaging, active wavefront manipulation, ultrafast spatiotemporal control of light, quantum communications, thermal emission management, novel display technologies, and sensing. In parallel with the development of flat optics, we have witnessed an incredible progress in the large-area synthesis and physical understanding of atomically thin, two-dimensional (2D) quantum materials. Given that these materials bring a wealth of unique physical properties and feature the same dimensionality as planar optical elements, they appear to have exactly what it takes to develop the next generation of high-performance flat optics.

Funder

US Air Force Office of Scientific Research

Multidisciplinary University Research Initiative

Department of Energy

AFSOR

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3