Greatly Enhanced Resonant Exciton‐Trion Conversion in Electrically Modulated Atomically Thin WS2 at Room Temperature

Author:

Wang Zeng1ORCID,Sebek Matej123,Liang Xinan1,Elbanna Ahmed145,Nemati Arash1,Zhang Nan1,Goh Choon Hwa Ken1,Jiang Mengting1,Pan Jisheng1,Shen Zexiang45,Su Xiaodi1,Thanh Nguyen Thi Kim23,Sun Handong45,Teng Jinghua1

Affiliation:

1. Institute of Materials Research and Engineering (IMRE) Agency for Science Technology and Research (A*STAR) Singapore 138634 Singapore

2. Biophysics Group Department of Physics and Astronomy University College London London WC1E 6BT UK

3. UCL Healthcare Biomagnetics and Nanomaterials Laboratories London W1S 4BS UK

4. Centre for Disruptive Photonic Technologies The Photonic Institute SPMS Nanyang Technological University Singapore 637371 Singapore

5. Division of Physics and Applied Physics School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore

Abstract

AbstractExcitonic resonance in atomically thin semiconductors offers a favorite platform to study 2D nanophotonics in both classical and quantum regimes and promises potentials for highly tunable and ultra‐compact optical devices. The understanding of charge density dependent exciton‐trion conversion is the key for revealing the underlaying physics of optical tunability. Nevertheless, the insufficient and inefficient light‐matter interactions hinder the observation of trionic phenomenon and the development of excitonic devices for dynamic power‐efficient electro‐optical applications. Here, by engaging an optical cavity with atomically thin transition metal dichalcogenides (TMDCs), greatly enhanced exciton‐trion conversion is demonstrated at room temperature (RT) and achieve electrical modulation of reflectivity of ≈40% at exciton and 7% at trion state, which correspondingly enables a broadband large phase tuning in monolayer tungsten disulfide. Besides the absorptive conversion, ≈100% photoluminescence conversion from excitons to trions is observed at RT, illustrating a clear physical mechanism of an efficient exciton‐trion conversion for extraordinary optical performance. The results indicate that both excitons and trions can play significant roles in electrical modulation of the optical parameters of TMDCs at RT. The work shows the real possibility for realizing electrical tunable and multi‐functional ultra‐thin optical devices using 2D materials.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3