Theoretical model of passive mode-locking in terahertz quantum cascade lasers with distributed saturable absorbers

Author:

Seitner Lukas1ORCID,Popp Johannes1ORCID,Haider Michael1ORCID,Dhillon Sukhdeep S.2ORCID,Vitiello Miriam S.3ORCID,Jirauschek Christian14ORCID

Affiliation:

1. TUM School of Computation, Information and Technology, Technical University of Munich (TUM) , D-85748 Garching , Germany

2. Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris , Paris , France

3. NEST, CNR – Istituto Nanoscienze and Scuola Normale Superiore , Piazza San Silvestro 12, 56127 , Pisa , Italy

4. TUM Center for Quantum Engineering (ZQE), Technical University of Munich (TUM) , D-85748 Garching , Germany

Abstract

Abstract In research and engineering, short laser pulses are fundamental for metrology and communication. The generation of pulses by passive mode-locking is especially desirable due to the compact setup dimensions, without the need for active modulation requiring dedicated external circuitry. However, well-established models do not cover regular self-pulsing in gain media that recover faster than the cavity round trip time. For quantum cascade lasers (QCLs), this marked a significant limitation in their operation, as they exhibit picosecond gain dynamics associated with intersubband transitions. We present a model that gives detailed insights into the pulse dynamics of the first passively mode-locked QCL that was recently demonstrated. The presence of an incoherent saturable absorber, exemplarily realized by multilayer graphene distributed along the cavity, drives the laser into a pulsed state by exhibiting a similarly fast recovery time as the gain medium. This previously unstudied state of laser operation reveals a remarkable response of the gain medium on unevenly distributed intracavity intensity. We show that in presence of strong spatial hole burning in the laser gain medium, the pulse stabilizes itself by suppressing counter-propagating light and getting shortened again at the cavity facets. Finally, we study the robustness of passive mode-locking with respect to the saturable absorber properties and identify strategies for generating even shorter pulses. The obtained results may also have implications for other nanostructured mode-locked laser sources, for example, based on quantum dots.

Publisher

Walter de Gruyter GmbH

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3