Role of hot electron scattering in epsilon-near-zero optical nonlinearity

Author:

Wang Heng1,Du Kang1,Liu Ruibin2,Dai Xinhai1,Zhang Wending1,Chua Soo Jin134,Mei Ting1

Affiliation:

1. MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China

2. Department of Physics and Center of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China

3. Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore

4. LEES Program, Singapore-MIT Alliance for Research & Technology (SMART), 1 CREATE Way, #10-01 CREATE Tower, Singapore 138602, Singapore

Abstract

AbstractThe physical origin of epsilon-near-zero (ENZ) optical nonlinearity lies in the hot-electron dynamics, in which electron scattering plays an important role. With the damping factor defined by hot electron scattering time, the Drude model could be extended to modeling ENZ optical nonlinearity completely. We proposed a statistical electron scattering model that takes into account the effect of electron distribution in a nonparabolic band and conducted the investigation on indium tin oxide (ITO) with femtosecond-pump continuum-probe experiment. We found that ionized impurity scattering and acoustic phonon scattering are the two major scattering mechanisms, of which the latter had been neglected before. They dominate at low-energy and high-energy electrons, respectively, and are weakened or boosted for high electron temperature, respectively. The electron energy–dependent scattering time contributed from multiple scattering mechanisms shows the electron density–dependent damping factor. The comprehensive understanding of electron scattering in ITO will help to develop a complete model of ENZ optical nonlinearity.

Funder

Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3