Novel fiber-tip micro flowmeter based on optofluidic microcavity filled with silver nanoparticles solutions

Author:

Li Jinjian1,Qu Jian1,Liu Yi2,Li Yan3ORCID,Qu Shiliang4ORCID

Affiliation:

1. Harbin Institute of Technology , Harbin , Heilongjiang , China

2. Harbin Institute of Technology Weihai , Weihai , Shandong , China

3. Harbin Institute of Technology Weihai , 2 West Wenhua Road , Weihai 264209 , China

4. Harbin Institute of Technology , 92 xidazhi street , Harbin 150001 , China

Abstract

Abstract A novel fiber-tip micro flowmeter based on optofluidic microcavity filled with silver nanoparticles solutions (SNS) is proposed. CW fiber laser was used to heat SNS that can emit heat obviously due to the excellent optic-thermo effect. The heat generated by the silver nanoparticles would be taken away as the microfluidic flows over the fiber microcavity until thermal balance is established under different velocity. The effective refractive index (RI) of the SNS changed followed by temperature of the thermal balance. The dips of the Fabry–Perot interference spectrum shift and the flow velocity can be demodulated. Moreover, the sensor can measure the flow rate with a high sensitivity due to the superior thermal conductivity and specific heat capacity of sidewalls. The max flow rate sensitivity can reach 1.5 nm/(μL/s) in the large range of 0–5 μL/s with a detection limitation (DL) of 0.08 μL/s. The Micron scale probe-type flowmeter has strong robustness and can be used to measure flow rate in tiny space. The heating medium also has an excellent biological compatibility and is not contact with the fluidics directly. As such, we believe that the proposed fiber-tip micro flowmeter has great application potentials in haematology, oil prospecting, ocean dynamics and drug research.

Funder

Natural Science Foundation of Guangxi Province

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3