Magnetic black phosphorus microbubbles for targeted tumor theranostics

Author:

Zhu Yao1,Liu Yingying1,Xie Zhongjian2,He Tianzhen1,Su Lili1,Guo Fengjuan1,Arkin Gulzira1,Lai XiaoShu1,Xu Jinfeng1,Zhang Han3ORCID

Affiliation:

1. Department of Ultrasonography, Shenzhen Medical Ultrasound Engineering Center , Shenzhen People’s Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology , Shenzhen 518020 , China

2. Shenzhen International Institute for Biomedical Research , 518116 Shenzhen , Guangdong , China

3. Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People’s Hospital, Health Science Center, Shenzhen University , Shenzhen 518060 , P.R. China

Abstract

Abstract Black phosphorus (BP) is attracting more and more interest for the biomedical application. The absorption in a wide spectral range and high photothermal conversion efficiency make BP suitable for photothermal therapy. However, BP alone is hard to realize the targeted therapy, which limits the precision and efficiency of the therapy. Magnetic microbubbles (MBs) are favored drug carriers because they can resist the sheer force of blood flow in a magnetic field, which improves the efficiency of MBs adhesion to the vascular wall for targeted ultrasound diagnosis and therapy. This study first optimized the magnetic MBs configurations through controlling the connecting polyethylene glycol (PEG) chain length. The magnetic MBs with PEG2000 have been chosen for targeted BP nanosheets delivery due to the better stability and magnetic responsiveness. The magnetic black phosphorus microbubbles (MBBPM) can realize the targeted tumor theranostics in vitro and in vivo. They could be applied for the targeted ultrasound imaging with an enhanced echogenicity by three times when accumulated at the target site where the magnetic field is applied. As the NIR laser irradiation was applied on the accumulated MBBPM, they dynamited and the temperature increased rapidly. It improved the cell membrane permeability, thus accelerating and enhancing a precision photothermal killing effect to the breast cancer cells, compared to BP alone.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3