Ultrafast strong-field terahertz nonlinear nanometasurfaces

Author:

Cai Jiahua1,Chen Sai1,Geng Chunyan1,Li Jianghao1,Quan Baogang234,Wu Xiaojun5ORCID

Affiliation:

1. School of Electronic and Information Engineering , Beihang University , Beijing 100191 , China

2. Beijing National Laboratory for Condensed Matter Physics , Institute of Physics, Chinese Academy of Sciences , Beijing 100190 , China

3. Songshan Lake Material Laboratory , Dongguan , Guangdong 523808 , China

4. University of Chinese Academy of Sciences , Beijing 100049 , China

5. Zhangjiang Laboratory , Shanghai , China

Abstract

Abstract Strong-field terahertz (THz)–matter interaction permits the investigation of nonequilibrium behaviors in the nonperturbative zone. However, the unavailability of a high-field free-space THz source with high repetition rates, excellent beam quality, and high stability hinders its development. In this work, we obtain the nonlinear modulation dynamics of a “THz-nano” metasurface on silicon substrates using a time-resolved strong-field THz-pump THz-probe (TPTP) with a thousand orders local field enhancement through confining THz waves into nano-gaps (15 nm, λ/33,000). By switching the THz field strength, we successfully realize a self-modulation ∼50 GHz frequency shift, which is further verified via the TPTP ultrafast time-resolution technique. The phenomenon is attributed to the impact ionization (IMI) of the silicon substrate under the excitation of extremely confined strong THz fields in nano-gaps. Both strong-field induced intervalley scattering (IVS) and IMI effects of photodoped silicon occurring in nano-gaps and large-area substrates were also observed by 800 nm optical injection of carriers. These aforementioned findings provide a robust research platform for the realization of ultrafast time resolution nanoscale strong-field THz–matter interaction and new ideas for nonextreme laboratories to realize extreme THz science, applications, and THz nonlinear modulation device development.

Funder

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3