Multiplexed supercell metasurface design and optimization with tandem residual networks
Author:
Yeung Christopher12ORCID, Tsai Ju-Ming1, King Brian1, Pham Benjamin1, Ho David1, Liang Julia1, Knight Mark W.2, Raman Aaswath P.1ORCID
Affiliation:
1. Department of Materials Science and Engineering , University of California , Los Angeles , CA 90095 , USA 2. Northrop Grumman Corporation , Redondo Beach , CA 90278 , USA
Abstract
Abstract
Complex nanophotonic structures hold the potential to deliver exquisitely tailored optical responses for a range of applications. Metal–insulator–metal (MIM) metasurfaces arranged in supercells, for instance, can be tailored by geometry and material choice to exhibit a variety of absorption properties and resonant wavelengths. With this flexibility, however, comes a vast space of design possibilities that classical design paradigms struggle to effectively navigate. To overcome this challenge, here, we demonstrate a tandem residual network approach to efficiently generate multiplexed supercells through inverse design. By using a training dataset with several thousand full-wave electromagnetic simulations in a design space of over three trillion possible designs, the deep learning model can accurately generate a wide range of complex supercell designs given a spectral target. Beyond inverse design, the presented approach can also be used to explore the structure–property relationships of broadband absorption and emission in such supercell configurations. Thus, this study demonstrates the feasibility of high-dimensional supercell inverse design with deep neural networks, which is applicable to complex nanophotonic structures composed of multiple subunit elements that exhibit coupling.
Funder
Alfred P. Sloan Foundation
Publisher
Walter de Gruyter GmbH
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology
Reference60 articles.
1. J. Olthaus, P. Schrinner, and D. Reiter, “Optimal photonic crystal cavities for coupling nanoemitters to photonic integrated circuits,” Adv. Quantum Technol., vol. 3, p. 1900084, 2020, https://doi.org/10.1002/qute.201900084. 2. H. Yoshimi, T. Yamaguchi, Y. Ota, Y. Arakawa, and S. Iwamoto, “Slow light waveguides in topological valley photonic crystals,” Opt. Lett., vol. 45, pp. 2648–2651, 2020, https://doi.org/10.1364/ol.391764. 3. F. Bin Tarik, A. Famili, Y. Lao, and J. D. Ryckman, “Robust optical physical unclonable function using disordered photonic integrated circuits,” Nanophotonics, p. 20200049, 2020. 4. V. Mittapalli and H. Khan, “Excitation schemes of plasmonic angular ring resonator-based band-pass filters using a MIM waveguide,” Photonics, vol. 6, no. 2, p. 41, 2019, https://doi.org/10.3390/photonics6020041. 5. F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano, vol. 9, no. 4, pp. 4111–4119, 2015, https://doi.org/10.1021/acsnano.5b00218.
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|