Terahertz virus-sized gold nanogap sensor

Author:

Ji Gangseon1,Kim Hwan Sik2,Cha Seong Ho2,Lee Hyoung-Taek1,Kim Hye Ju2,Lee Sang Woon2,Ahn Kwang Jun2ORCID,Kim Kyoung-Ho3,Ahn Yeong Hwan2,Park Hyeong-Ryeol1ORCID

Affiliation:

1. Department of Physics , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 449419 , Republic of Korea

2. Department of Physics, Department of Energy Systems Research , Ajou University , Suwon 16499 , Republic of Korea

3. Department of Physics , Research Institute for Nanoscale Science and Technology, Chungbuk National University , Cheongju 28644 , Republic of Korea

Abstract

Abstract We demonstrated an ultra-sensitive terahertz virus detection method combined with virus-sized gold nanogaps filled with Al2O3. Large-area high-density 20 nm-gap rectangular loop structures, containing a resonant frequency in the terahertz range, were fabricated on a 4-inch wafer using atomic layer lithography. When target viruses with a 60 nm diameter were located on the nanogaps, we observed a significant redshift of the resonant peak already with an average number of about 100 viruses per unit loop due to the strong field confinement and enhancement near the gap. Furthermore, when the virus was tightly attached to an etched gap like a bridge connecting metals, its sensitivity is doubled compared to the unetched gap, which resulted in 400% more resonance frequency shift per single virus particle than our previous work. Full-wave simulations and theoretical calculations based on modal expansions were in good agreement with the experiments, revealing that the resonant transmission spectrum was mostly determined by the change in refractive index in a two-dimensional-like optical hotspot near the nanogap. A further step could be taken to increase sensitivity by tuning nanogap-loops to the absorption frequencies associated with the intermolecular vibrational modes of the viruses and fingerprinting them as well.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3