Fine-tuning biexcitons-plasmon coherent states in a single nanocavity

Author:

Liang Kun1ORCID,Jin Lei2,Deng Xuyan2,Jiang Ping3,Yu Li4

Affiliation:

1. School of Electronic Engineering , Beijing University of Posts and Telecommunications , Beijing , China

2. School of Science , Beijing University of Posts and Telecommunications , Beijing , China

3. School of Science Microelectronics and Data Science , Anhui University of Technology , Maanshan , China

4. State Key Laboratory of Information Photonics and Optical Communications, School of Science , Beijing University of Posts and Telecommunications , Beijing , China

Abstract

Abstract A tunable plexcitonic material that sustains multimode hybridization is highly desirable, which is vital for advanced quantum devices. However, the research about regulations of biexcitons-plasmon coherent states has rarely been reported. Here we apply single-nanoparticle scattering spectroscopy correlative with SEM imaging to identify biexcitons-plasmon interaction in a metal-semiconductor hybrid structure composed of a single Au@Ag nanoparticle, J-aggregates molecules and tungsten disulfide (WS2) monolayer. The mode competition within the localized plasmonic hotspots (∼240 nm3) is revealed by continuously regulating the J-aggregates spacer. Two distinct anticrossings are observed at both excitons resonances, and large double Rabi splittings (137 meV and 124 meV) are obtained successfully. We establish experimentally that J-aggregates and WS2 monolayer are responsible for the middle polariton states, while plasmon rarely contributes. Further calculations show that plasmonic nanocavity enables coherent energy exchange with different excitons by providing a highly enhanced localized E-field. In addition, we find that the multimode coupling strengths can be efficiently tuned by changing the cavity morphology and environment temperature, where the tuning spectral accuracy can reach up to 1 nm. Our findings uncover the distinctive properties of biexcitons-plasmon polaritons, suggest an easily obtainable multiqubit states platform, and open up a new way to construct nanoscale photonic devices.

Funder

National Natural Science Foundation of China

State Key Laboratory of Information Photonics and Optical Communications

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3