Affiliation:
1. Department of Physics, Ulsan National Institute of Science and Technology (UNIST) , Ulsan, 44919 , South Korea
Abstract
Abstract
Photoluminescence (PL), a photo-excited spontaneous emission process, provides a wealth of optical and electronic properties of materials, which enable microscopic and spectroscopic imaging, biomedical sensing and diagnosis, and a range of photonic device applications. However, conventional far-field PL measurements have limitations in sensitivity and spatial resolution, especially to investigate single nano-materials or nano-scale dimension of them. In contrast, tip-enhanced photoluminescence (TEPL) nano-spectroscopy provides an extremely high sensitivity with <10 nm spatial resolution, which allows the desired nano-scale characterizations. With outstanding and unique optical properties, low-dimensional quantum materials have recently attracted much attention, and TEPL characterizations, i. e., probing and imaging, and even control at the nano-scale, have been extensively studied. In this review, we discuss the fundamental working mechanism of PL enhancement by plasmonic tip, and then highlight recent advances in TEPL studies for low-dimensional quantum materials. Finally, we discuss several remaining challenges of TEPL nano-spectroscopy and nano-imaging, such as implementation in non-ambient media and in situ environments, limitations in sample structure, and control of near-field polarization, with perspectives of the approach and its applications.
Funder
National Research Foundation of Korea
Korea government
Ulsan National Institute of Science & Technology
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献