Programmable multifunctional integrated nanophotonics

Author:

Pérez Daniel1,Gasulla Ivana1,Capmany José1

Affiliation:

1. Photonics Research Laboratories, ITEAM Research Institute, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain

Abstract

AbstractProgrammable multifunctional integrated nanophotonics (PMIN) is a new paradigm that aims at designing common integrated optical hardware configurations, which by suitable programming can implement a variety of functionalities that can be elaborated for basic or more complex operations in many application fields. The interest in PMIN is driven by the surge of a considerable number of emerging applications in the fields of telecommunications, quantum information processing, sensing and neurophotonics that will be calling for flexible, reconfigurable, low-cost, compact and low-power-consuming devices, much in the same way as how field programmable gate array (FPGA) devices operate in electronics. The success of PMIN relies on the research into suitable interconnection hardware architectures that can offer a very high spatial regularity as well as the possibility of independently setting (with a very low power consumption) the interconnection state of each connecting element. Integrated waveguide meshes provide regular and periodic geometries, formed by replicating a unit cell, which can take the form of a square, hexagon or triangle, among other configurations. Each side of the cell is formed by two integrated waveguides connected by means of a Mach-Zehnder interferometer (MZI) or a tunable directional coupler that can be operated by means of an output control signal as a crossbar switch or as a variable coupler with independent power division ratio and phase shift. In this paper, we review the recent advances reported in the field of PMIN and, especially, in those based on integrated photonic waveguide meshes, both from the theoretical as well as from the experimental point of view. We pay special attention to outlining the design principles, material platforms, synthesis algorithms and practical constraints of these structures and discuss their applicability to different fields.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Reference91 articles.

1. Integrated multimode interferometers with arbitrary designs for photonic boson sampling;Nat Photon,2013

2. Self-aligning universal beam coupler;Opt Express,2013

3. A compact and low-loss MMI coupler fabricated with CMOS Technology;IEEE Photon J,2012

4. Integrated-photonic switching structures;Appl Phys Lett Photon,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3