Affiliation:
1. Beijing Information Science and Technology University
2. Guangzhou Nansha Intelligent Photonic Sensing Research Institute
Abstract
We propose an improved optical neural network (ONN) circuit architecture based on conventional micro-resonator ONNs, called the Phase-based Micro-resonator Optical Neural Network (PMONN). PMONN's core architecture features a Convolutions and Batch Normalization (CB) unit, comprising a phase-based (PB) convolutional layer, a Depth-Point-Wise (DPW) convolutional layer, and a reconstructed Batch Normalization (RBN) layer. The PB convolution kernel uses modulable phase shifts of Add-drop MRRs as learnable parameters and their optical transfer function as convolution weights. The DPW convolution kernel amplifies PB convolution weights by learning the amplification factors. To address the internal covariate shift during training, the RBN layer normalizes DPW outputs by reconstructing the BN layer of the electronic neural network, which is then merged with the DPW layer in the test stage. We employ the tunable DAs in the architecture to implement the merged layer. PMONN achieves 99.15% and 91.83% accuracy on MNIST and Fashion-MNIST datasets, respectively. This work presents a method for implementing an optical neural network on the improved architecture based on MRRs and increases the flexibility and reusability of the architecture. PMONN has potential applications as the backbone for future optical object detection neural networks.
Funder
the Program of Promoting the Development of University-Diligence Talents
National Natural Science Foundation of China