Sorption of Cs(I) on Fe-montmorillonite relevant to geological disposal of HLW

Author:

Chikkamath Santosh1,Patel Madhuri A.2,Kar Aishwarya S.2,Raut Vaibhavi V.2,Tomar Bhupendra S.3,Manjanna Jayappa1

Affiliation:

1. Department of Chemistry , Rani Channamma University , Belagavi 591156 , India

2. Radioanalytical Chemistry Division, Bhabha Atomic Research Centre , Mumbai 400085 , India

3. Homi Bhabha National Institute, Anushaktinagar , Mumbai 400094 , India

Abstract

Abstract Bentonite is the candidate buffer and backfill material in the deep geological repositories. Montmorillonite (Mt) is the major clay minerals of bentonite. Over a long period of time, the interaction of corrosion products from overpack and/or cansister with clay minerals is expected to result in formation of Fe(III)-Mt, a plausible alterated product. In this context, it is important to understand the properties of Fe-Mt in comparison with original clay mineral, Na-Mt. In the present study, sorption behavior of Cs(I), long lived fission product (135Cs, t1/2 = 2.3 × 106 years; 137Cs, t1/2 = 30.1 years) with high fission yield, on Fe(III)-Mt is investigated. Batch sorption studies are conducted at varying pH (3–9), ionic strength (0.001–1 M) and Cs(I) concentration (10−10 to 0.05 M). The distribution coefficient (Kd) of Cs(I) on Fe(III)-Mt was found to be independent of pH except at low pH, indicating ion exchange mechanism as dominant interaction mode for Cs(I). It was further verified by ionic strength variation which depicted decrease in Cs(I) sorption with increasing ionic strength. Adsorption isotherm of Cs(I) was found to be linear over the concentration range of 10−10 to 10−3 M Cs(I). The Fe released from Fe(III)-Mt during the Cs(I) sorption was found to be not more than 0.2 ppm. However, on lowering the pH and increasing the ionic strength, the Fe release increased. Furthermore, the apparent diffusion coefficient for Cs(I) in Fe(III)-Mt has been determined.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Reference57 articles.

1. Pusch, R.: Waste disposal in rock developments in geotechnical engineering, Vol. 76. Elsevier, New York (1994).

2. Fernandez, A. M., Villar, M. V.: Geochemical behavior of a bentonite barrier in the laboratory after up to 8 years of heating and hydration. Appl. Geochem. 25, 809 (2010).10.1016/j.apgeochem.2010.03.001

3. Karnland, O., Olsson, S., Nilsson, U.: Mineralogy and sealing properties of various bentonites and smectite-rich clay materials. In: SKB TR-06-30. Swedish Nuclear Fuel and Waste Management Co, Stockholm, Sweden (2006).

4. Komine, H.: Simplified evaluation for swelling characteristics of bentonites. Eng. Geol. 71, 265 (2004).10.1016/S0013-7952(03)00140-6

5. Kozai, N., Ohnuki, T., Matsumoto, J., Banba, T., Ito, Y.: A study of specific sorption of neptunium (V) on smectite in low pH solution. Radiochim. Acta 75, 149 (1996).

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3