Adsorption of Cs(I) and Sr(II) on Bentonites with Different Compositions at Different pH

Author:

Izosimova Yulia,Gurova Irina,Tolpeshta InnaORCID,Karpukhin Michail,Zakusin SergeyORCID,Zakusina Olga,Samburskiy Alexey,Krupskaya VictoriaORCID

Abstract

This paper deals with adsorption regularities and mechanisms of nonradioactive Cs(I) and Sr(II) analogs on bentonites of different chemical and mineral composition from solutions of Cs and Sr nitrates with pH 3, 7, and 10 units at constant ionic strength. The bentonites were taken from the deposits Taganskoe (T), Dash-Salakhlinskoe (DS), Zyryanskoe (Z), and 10th Khutor (10H). The pH of bentonite aqueous suspensions, T and DS, exceeded 9 units. A less alkaline reaction was observed in bentonite suspensions Z and T with pH 8.94 and 7.70, respectively. Bentonites T and DS contained significant amounts of nonsilicate iron compounds, 1.0 and 0.5%, respectively. The recovery rate of the studied clays from aqueous solutions of Cs(I) and Sr(II) ions in concentrations from 0.25 to 5 mmol/L varied from 50% to 90% and decreased in the following order: “Ta-ganskoe” > “Dash-Salakhlinskoe” > “Zyryanskoe” > “10th Khutor” in the studied pH range. The main mechanism of Cs(I) and Sr(II) sorption in the studied pH range was cation fixation in the form of outer-sphere complexes on planar surfaces resulting from ion exchange. Increasing pH (pH > 6) enhanced pH-dependent positions, which allowed Cs(I) and especially Sr(II) ions to fix on them more firmly as inner-sphere complexes. At pH 9–10, Sr(II) could precipitate in the form of carbonates. The sorption of Cs(I) + and Sr(II) was accompanied by competitive interactions with proton at pH < 6 and Na+, Ca2+, Mg2+, and K+ cations at higher pH values. This competition was more apparent at concentrations of Cs(I)and Sr(II) in initial solutions < 0.5 mmol/L. The ability of bentonite T to sorb Cs(I) and Sr(II) in large amounts compared to the other bentonites was determined by high CEC values and charge of smectite T.

Funder

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference62 articles.

1. Analysis of Various Concepts for RW Class 1 Disposal in Crystalline Rocks

2. A Review of the Development of Bentonite Barriers in the KBS 3V Disposal Concept,2014

3. Strategic Master Plan for R&D Demonstrating the Safety of Construction, Operation and Closure of a Deep Geological Disposal Facility for Radioactive Waste;Dorofeev;Radioact. Waste,2017

4. Use of Natural Clay Materials to Increase Nuclear and Radiation Safety of Nuclear Legacy Facilities;Krupskaya;Radioact. Waste,2018

5. BUFFER PROPERTIES OF BENTONITE BARRIER SYSTEMS FOR RADIOACTIVE WASTE ISOLATION IN GEOLOGICAL REPOSITORY IN THE NIZHNEKANSKIY MASSIF

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3