Scale-up of high specific activity 186gRe production using graphite-encased thick 186W targets and demonstration of an efficient target recycling process

Author:

Balkin Ethan R.1,Gagnon Katherine1,Dorman Eric1,Emery Robert1,Li Yawen1,Wooten A. Lake1,Smith Bennett E.2,Strong Kevin T.3,Pauzauskie Peter J.3,Fassbender Michael E.4,Cutler Cathy S.56,Ketring Alan R.6,Jurisson Silvia S.7,Wilbur D. Scott1

Affiliation:

1. Department of Radiation Oncology , University of Washington , Seattle, WA 98195 , USA

2. Chemistry Department , University of Washington , Seattle, WA 98195 , USA

3. Materials Science and Engineering Department , University of Washington , Seattle, WA 98195 , USA

4. Los Alamos National Laboratory , Los Alamos, NM 87545 , USA

5. Medical Isotope Research and Production Program , Brookhaven National Laboratory , Upton, NY 11973 , USA

6. University of Missouri Research Reactor Center , Columbia, MO 65211 , USA

7. Department of Chemistry , University of Missouri , Columbia , MO 65211, USA

Abstract

Abstract Production of high specific activity 186gRe is of interest for development of theranostic radiopharmaceuticals. Previous studies have shown that high specific activity 186gRe can be obtained by cyclotron irradiation of enriched 186W via the 186W(d,2n)186gRe reaction, but most irradiations were conducted at low beam currents and for short durations. In this investigation, enriched 186W metal targets were irradiated at high incident deuteron beam currents to demonstrate production rates and contaminants produced when using thick targets. Full-stopping thick targets, as determined using SRIM, were prepared by uniaxial pressing of powdered natural abundance W metal or 96.86% enriched 186W metal encased between two layers of graphite flakes for target material stabilization. An assessment of structural integrity was made on each target preparation. To assess the performance of graphite-encased thick 186W metal targets, along with the impact of encasing on the separation chemistry, targets were first irradiated using a 22 MeV deuteron beam for 10 min at 10, 20, and 27 μA, with an estimated nominal deuteron energy of 18.7 MeV on the 186W target material (after energy degradation correction from top graphite layer). Gamma-ray spectrometry was performed post EOB on all targets to assess production yields and radionuclidic byproducts. The investigation also evaluated a method to recover and recycle enriched target material from a column isolation procedure. Material composition analyses of target materials, pass-through/wash solutions and recycling process isolates were conducted with SEM, FTIR, XRD, EDS and ICP-MS spectrometry. To demonstrate scaled-up production, a graphite-encased 186W target made from recycled 186W was irradiated for ~2 h with 18.7 MeV deuterons at a beam current of 27 μA to provide 0.90 GBq (24.3 mCi) of 186gRe, decay-corrected to the end of bombardment. ICP-MS analysis of the isolated 186gRe solution provided data that indicated the specific activity of 186gRe in this scaled-up production run was 2.6±0.5 GBq/μg (70±10 Ci/mg).

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3