Sorption behavior of Co-radionuclides from radioactive waste solution on graphene enhanced by immobilized sugarcane and carboxy methyl cellulose

Author:

Sharaf El-Deen Sahar E. A.1,Sharaf El-Deen Gehan E.2,Jamil Tarek S.3

Affiliation:

1. Department of Nuclear Chemistry , Hot Laboratories Center, Atomic Energy Authority , Inshas P.O. Box 13759 , Cairo , Egypt , Phone: +2 010 09846926, Fax: +2 4620806

2. Department of Radioactive Waste Management , Hot Laboratories Center, Atomic Energy Authority , Inshas P.O. Box 13759 , Cairo , Egypt

3. National Research Center , Water Pollution Control Department , El Buhouth Street, P.O. Box 12311 , Dokki, Cairo , Egypt

Abstract

Abstract Novel graphene-sugarcane bagasse-carboxy methyl cellulose (GSCCMC) nanocomposite have been synthesized via freeze-drying technique after preparation of graphene from natural graphite by modified Hummer method and evaluated as adsorbent for sorption of 60Co(II)-radionuclides from radioactive waste solution and real wastewater samples using a series of batch adsorption experiments and compared with graphene. The synthesized (GSCCMC) nanocomposite was characterized using Fourier transformer infrared (FT-IR), Transmission electron microscope (TEM), Thermal analysis, Elemental analysis, Specific Surface area (SBET) and X-ray diffraction (XRD), which confirmed the successful formation of graphene-sugarcane bagasse-carboxy methyl cellulose (GSCCMC) nanocomposite. Different parameters affecting the removal process including pH, contact time and metal ion concentration were investigated. Isotherm and kinetic models were studied. Adsorption kinetics described well by pseudo-second-order. The Langmuir model provides a better fitting than the Freundlich and Temkin models and the maximum adsorption capacity from Langmuir model were found to be 0.4186 and 0.2424 mol/g for (GSCCMC) nanocomposite and graphene (G), respectively. From Dubinin–Radushkevich (D–R) isotherm model, the sorption energy (E)-values of graphene (G) and (GSCCMC) are 10.16 and 10.564 kJ/mol, respectively and this mean the adsorption of 60Co(II)-radionuclides can be explained by chemisorption process, which is characteristic of ion exchange. Desorption of 60Co(II)-radionuclides from loaded (GSCCMC) nanocomposite was studied using different eluents (0.1 M HCl, 0.1 M NaOH and H2O). The data illustrated that 0.1 M HCl solution showed maximum desorption percent (D%) than other eluents. The economic viability of the adsorption process for the removal of 60Co(II) from wastewater samples was studied. The result indicated that the cost for preparation of (GSCCMC) nanocomposite is lower than for (GSCCMC) nanocomposite that prepared from purchase the graphene powder. Therefore, the synthesized (GSCCMC) nanocomposite was used as regenerated material for sorption of 60Co(II)-radionuclides from aqueous solutions and can be used for many times as a cost-effective and environmental friendly material in wastewater treatment.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3