Development of the Functionalized Nanocomposite Materials for Adsorption/Decontamination of Radioactive Pollutants

Author:

Gu Gyo Eun,Bae Joonwon,Park Ho Seok,Hong Jin-YongORCID

Abstract

A polymer-based nanofiber membrane with a high specific surface area, high porosity and abundant adsorption sites is demonstrated for selective trapping of radionuclides. The Prussian blue (PB)/poly(methyl methacrylate) (PMMA) nanofiber composites were successfully prepared through a one-step, single-nozzle electrospinning method. Various analytical techniques were used to examine the physical and chemical properties of PB nanoparticles and electrospun nanofibers. It is possible to enhance binding affinity and selectivity to radionuclide targets by incorporation of the PB nanoparticles into the polymer matrix. It is noteworthy that the maximum 133Cs adsorption capacity of hte PB/PMMA nanofiber filter is approximately 28 times higher than that of bulk PB, and the removal efficiency is measured to be 95% at 1 ppm of 133Cs. In addition, adsorption kinetics shows that the PB/PMMA nanofiber has a homogenous surface for adsorption, and all sites on the surface have equal adsorption energies in terms of ion-exchange between cyano groups of the introduced PB nanoparticles and radionuclides.

Funder

Ministry of Trade, Industry & Energy

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3