Affiliation:
1. Department of Mathematics, Zhejiang Normal University , Jinhua , Zhejiang, 321004 , P. R. China
2. School of Mathematics and Statistics, Central China Normal University , Wuhan , 430079 , P. R. China
Abstract
Abstract
In this article, we study a Hardy-Sobolev critical elliptic system involving coupled perturbation terms:
(0.1)
−
Δ
u
+
V
1
(
x
)
u
=
η
1
η
1
+
η
2
∣
u
∣
η
1
−
2
u
∣
v
∣
η
2
∣
x
′
∣
+
α
α
+
β
Q
(
x
)
∣
u
∣
α
−
2
u
∣
v
∣
β
,
−
Δ
v
+
V
2
(
x
)
v
=
η
2
η
1
+
η
2
∣
v
∣
η
2
−
2
v
∣
u
∣
η
1
∣
x
′
∣
+
β
α
+
β
Q
(
x
)
∣
v
∣
β
−
2
v
∣
u
∣
α
,
\left\{\begin{array}{c}-\Delta u+{V}_{1}\left(x)u=\frac{{\eta }_{1}}{{\eta }_{1}+{\eta }_{2}}\frac{{| u| }^{{\eta }_{1}-2}u{| v| }^{{\eta }_{2}}}{| x^{\prime} | }+\frac{\alpha }{\alpha +\beta }Q\left(x)| u{| }^{\alpha -2}u| v{| }^{\beta },\\ -\Delta v+{V}_{2}\left(x)v=\frac{{\eta }_{2}}{{\eta }_{1}+{\eta }_{2}}\frac{{| v| }^{{\eta }_{2}-2}v{| u| }^{{\eta }_{1}}}{| x^{\prime} | }+\frac{\beta }{\alpha +\beta }Q\left(x){| v| }^{\beta -2}v{| u| }^{\alpha },\end{array}\right.
where
n
≥
3
n\ge 3
,
2
≤
m
<
n
2\le m\lt n
,
x
≔
(
x
′
,
x
″
)
∈
R
m
×
R
n
−
m
x:= \left(x^{\prime} ,{x}^{^{\prime\prime} })\in {{\mathbb{R}}}^{m}\times {{\mathbb{R}}}^{n-m}
,
η
1
,
η
2
>
1
{\eta }_{1},{\eta }_{2}\gt 1
, and
η
1
+
η
2
=
2
(
n
−
1
)
n
−
2
{\eta }_{1}+{\eta }_{2}=\frac{2\left(n-1)}{n-2}
,
α
,
β
>
1
\alpha ,\beta \gt 1
and
α
+
β
<
2
n
n
−
2
\alpha +\beta \lt \frac{2n}{n-2}
, and
V
1
(
x
)
,
V
2
(
x
)
,
Q
(
x
)
∈
C
(
R
n
)
{V}_{1}\left(x),{V}_{2}\left(x),Q\left(x)\in C\left({{\mathbb{R}}}^{n})
. Observing that (0.1) is doubly coupled, we first develop two efficient tools (i.e., a refined Sobolev inequality and a variant of the “Vanishing” lemma). On the previous tools, we will establish a global compactness result (i.e., a complete description for the Palais-Smale sequences of the corresponding energy functional) and some existence result for (0.1) via variational method. Our strategy turns out to be very concise because we avoid the use of Levy concentration functions and truncation techniques.
Reference33 articles.
1. A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations, J. Lond. Math. Soc. 75 (2007), no. 1, 67–82.
2. A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349–381.
3. C. O. Alves, D. C. de Morais Filho and M. A. S. Souto, On systems of elliptic equations involving subcritical or critical Sobolev exponents, Nonlinear Anal. 42 (2000), 771–787.
4. M. Bhakta, S. Chakraborty and P. Pucci, Nonhomogeneous systems involving critical or subcritical nonlinearities, Differ. Integral Equ. 33 (2020), no. 7–8, 323–336.
5. M. Bhakta, S. Chakraborty and P. Pucci, Fractional Hardy-Sobolev equations with nonhomogeneous terms, Adv. Nonlinear Anal. 10 (2021), no. 1, 1086–1116.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献