Affiliation:
1. School of Science, Tianjin University of Commerce , Tianjin 300134 , People’s Republic of China
Abstract
AbstractIn this article, we consider the upper critical Choquard equation with a local perturbation−Δu=λu+(Iα∗∣u∣p)∣u∣p−2u+μ∣u∣q−2u,x∈RN,u∈H1(RN),∫RN∣u∣2=a,\left\{\begin{array}{l}-\Delta u=\lambda u+\left({I}_{\alpha }\ast | u\hspace{-0.25em}{| }^{p})| u\hspace{-0.25em}{| }^{p-2}u+\mu | u\hspace{-0.25em}{| }^{q-2}u,\hspace{1em}x\in {{\mathbb{R}}}^{N},\\ u\in {H}^{1}\left({{\mathbb{R}}}^{N}),\hspace{1em}{\displaystyle \int }_{{{\mathbb{R}}}^{N}}| u\hspace{-0.25em}{| }^{2}=a,\end{array}\right.whereN≥3N\ge 3,μ>0\mu \gt 0,a>0a\gt 0,λ∈R\lambda \in {\mathbb{R}},α∈(0,N)\alpha \in \left(0,N),p=p¯≔N+αN−2p=\bar{p}:= \frac{N+\alpha }{N-2},q∈2,2+4Nq\in \left(2,2+\frac{4}{N}\right), andIα=C∣x∣N−α{I}_{\alpha }=\frac{C}{| x{| }^{N-\alpha }}withC>0C\gt 0. Whenμaq(1−γq)2≤(2K)qγq−2p¯2(p¯−1)\mu {a}^{\tfrac{q\left(1-{\gamma }_{q})}{2}}\le {\left(2K)}^{\tfrac{q{\gamma }_{q}-2\bar{p}}{2\left(\bar{p}-1)}}withγq=N2−Nq{\gamma }_{q}=\frac{N}{2}-\frac{N}{q}andKKbeing some positive constant, we prove(1)Existence and orbital stability of the ground states.(2)Existence, positivity, radial symmetry, exponential decay, and orbital instability of the “second class” solutions.This article generalized and improved parts of the results obtained for the Schrödinger equation.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献