Affiliation:
1. School of Mathematics and Statistics, Shandong University of Technology , Zibo 255049 , PR China
Abstract
Abstract
We study the existence and nonexistence of normalized solutions for the nonlinear Schrödinger equation with mixed nonlocal nonlinearities:
−
Δ
u
=
λ
u
+
μ
(
I
α
∗
∣
u
∣
p
)
∣
u
∣
p
−
2
u
+
(
I
α
∗
∣
u
∣
q
)
∣
u
∣
q
−
2
u
in
R
N
,
∫
R
N
∣
u
∣
2
d
x
=
c
,
\left\{\begin{array}{ll}-\Delta u=\lambda u+\mu \left({I}_{\alpha }\ast {| u| }^{p}){| u| }^{p-2}u+\left({I}_{\alpha }\ast {| u| }^{q}){| u| }^{q-2}u& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N},\\ \mathop{\displaystyle \int }\limits_{{{\mathbb{R}}}^{N}}{| u| }^{2}{\rm{d}}x=c,& \end{array}\right.
where
N
≥
1
,
N
+
α
N
≤
p
<
q
≤
N
+
α
+
2
N
N\ge 1,\frac{N+\alpha }{N}\le p\lt q\le \frac{N+\alpha +2}{N}
, the parameter
μ
∈
R
\mu \in {\mathbb{R}}
and
λ
\lambda
is a Lagrange multiplier. Furthermore, we prove the relationship between minimizers and ground state solutions under the Nehari manifold, which seems to be the first result in the nonlocal context.
Reference28 articles.
1. S. Bhattarai, On fractional Schrödinger systems of Choquard type, J. Differential Equations 263 (2017), 3197–3229.
2. D. Bhimani, T. Gou, and H. Hajaiej, Normalized solutions to nonlinear Schrödinger equations with competing Hartree-type nonlinearities, 2022, arXiv:2209.00429v2.
3. K. J. Brown and T. F. Wu, A fibering map approach to a potential operator equation and its applications, Differential Integral Equations 22 (2009), 1097–1114.
4. K. J. Brown and Y. Zhang, The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Differential Equations 193 (2003), 481–499.
5. D. Cao, H. Jia, and X. Luo, Standing waves with prescribed mass for the Schrödinger equations with van der Waals-type potentials, J. Differential Equations 276 (2021), 228–263.