Existence and non-existence results for Kirchhoff-type problems with convolution nonlinearity

Author:

Chen Sitong1,Zhang Binlin2,Tang Xianhua1

Affiliation:

1. School of Mathematics and Statistics , Central South University , Changsha , Hunan 410083 , P. R. China

2. Department of Mathematics , Heilongjiang Institute of Technology , Harbin , 150050 , P. R. China

Abstract

Abstract This paper is concerned with the following Kirchhoff-type problem with convolution nonlinearity: - ( a + b 3 | u | 2 d x ) Δ u + V ( x ) u = ( I α * F ( u ) ) f ( u ) , x 3 , u H 1 ( 3 ) , -\bigg{(}a+b\int_{\mathbb{R}^{3}}\lvert\nabla u|^{2}\,\mathrm{d}x\bigg{)}% \Delta u+V(x)u=(I_{\alpha}*F(u))f(u),\quad x\in{\mathbb{R}}^{3},\,u\in H^{1}(% \mathbb{R}^{3}), where a , b > 0 {a,b>0} , I α : 3 {I_{\alpha}\colon\mathbb{R}^{3}\rightarrow\mathbb{R}} , with α ( 0 , 3 ) {\alpha\in(0,3)} , is the Riesz potential, V 𝒞 ( 3 , [ 0 , ) ) {V\in\mathcal{C}(\mathbb{R}^{3},[0,\infty))} , f 𝒞 ( , ) {f\in\mathcal{C}(\mathbb{R},\mathbb{R})} and F ( t ) = 0 t f ( s ) d s {F(t)\kern-1.0pt=\kern-1.0pt\int_{0}^{t}f(s)\,\mathrm{d}s} . By using variational and some new analytical techniques, we prove that the above problem admits ground state solutions under mild assumptions on V and f. Moreover, we give a non-existence result. In particular, our results extend and improve the existing ones, and fill a gap in the case where f ( u ) = | u | q - 2 u {f(u)=|u|^{q-2}u} , with q ( 1 + α / 3 , 2 ] {q\in(1+\alpha/3,2]} .

Funder

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Analysis

Reference42 articles.

1. C. O. Alves, F. Gao, M. Squassina and M. Yang, Singularly perturbed critical Choquard equations, J. Differential Equations 263 (2017), no. 7, 3943–3988.

2. A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc. 348 (1996), no. 1, 305–330.

3. G. Autuori, F. Cluni, V. Gusella and P. Pucci, Mathematical models for nonlocal elastic composite materials, Adv. Nonlinear Anal. 6 (2017), no. 4, 355–382.

4. S. Baraket and G. Molica Bisci, Multiplicity results for elliptic Kirchhoff-type problems, Adv. Nonlinear Anal. 6 (2017), no. 1, 85–93.

5. S. T. Chen and X. H. Tang, Improved results for Klein–Gordon–Maxwell systems with general nonlinearity, Discrete Contin. Dyn. Syst. 38 (2018), no. 5, 2333–2348.

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Existence of Nodal Solutions with Arbitrary Number of Nodes for Kirchhoff Type Equations;Bulletin of the Malaysian Mathematical Sciences Society;2024-09-03

2. Solutions to discrete nonlinear Kirchhoff–Choquard equations;Bulletin of the Malaysian Mathematical Sciences Society;2024-07-04

3. High Energy Solutions for p-Kirchhoff Elliptic Problems with Hardy–Littlewood–Sobolev Nonlinearity;The Journal of Geometric Analysis;2024-04-27

4. Existence for a Nonlocal Porous Medium Equations of Kirchhoff Type with Logarithmic Nonlinearity;Turkish Journal of Mathematics and Computer Science;2023-12-31

5. Existence and asymptotic behavior of solutions for Kirchhoff equations with general Choquard-type nonlinearities;Zeitschrift für angewandte Mathematik und Physik;2023-10-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3