Abstract
AbstractThis article deals with the study of the following Kirchhoff–Choquard problem: $$\begin{aligned} \begin{array}{cc} \displaystyle M\left( \, \int \limits _{{\mathbb {R}}^N}|\nabla u|^p\right) (-\Delta _p) u + V(x)|u|^{p-2}u = \left( \, \int \limits _{{\mathbb {R}}^N}\frac{F(u)(y)}{|x-y|^{\mu }}\,dy \right) f(u), \;\;\text {in} \; {\mathbb {R}}^N,\\ u > 0, \;\; \text {in} \; {\mathbb {R}}^N, \end{array} \end{aligned}$$
M
∫
R
N
|
∇
u
|
p
(
-
Δ
p
)
u
+
V
(
x
)
|
u
|
p
-
2
u
=
∫
R
N
F
(
u
)
(
y
)
|
x
-
y
|
μ
d
y
f
(
u
)
,
in
R
N
,
u
>
0
,
in
R
N
,
where M models Kirchhoff-type nonlinear term of the form $$M(t) = a + bt^{\theta -1}$$
M
(
t
)
=
a
+
b
t
θ
-
1
, where $$a, b > 0$$
a
,
b
>
0
are given constants; $$1<p<N$$
1
<
p
<
N
, $$\Delta _p = \text {div}(|\nabla u|^{p-2}\nabla u)$$
Δ
p
=
div
(
|
∇
u
|
p
-
2
∇
u
)
is the p-Laplacian operator; potential $$V \in C^2({\mathbb {R}}^N)$$
V
∈
C
2
(
R
N
)
; f is monotonic function with suitable growth conditions. We obtain the existence of a positive high energy solution for $$\theta \in \left[ 1, \frac{2N-\mu }{N-p}\right) $$
θ
∈
1
,
2
N
-
μ
N
-
p
via the Pohožaev manifold and linking theorem. Apart from this, we also studied the radial symmetry of solutions of the associated limit problem.
Funder
University Grants Commission
SERB SRG
Czech Science Foundation
Masaryk University
Publisher
Springer Science and Business Media LLC
Reference36 articles.
1. Alves, C.O., Corrêa, F.J.S.A., Ma, T.F.: Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl. 49(1), 85–93 (2005)
2. Azzollini, A.: The elliptic Kirchhoff equation in $${{\mathbb{R} }}^N$$ perturbed by a local nonlinearity. Differ. Integr. Equ. 25, 543–554 (2012)
3. Badiale, M., Nabana, E.: A note on radiality of solutions of p-Laplacian equation. Appl. Anal. 52(1–4), 35–43 (1994)
4. Bartolo, P., Benci, V., Fortunato, D.: Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity. Nonlinear Anal. 7, 981–1012 (1983)
5. Bartsch, T., Weth, T.: Three nodal solutions of singularly perturbed elliptic equations on domains with topology. Ann. Inst. H. Poincaré C Anal. Non Linéaire 22, 259–281 (2005)