Boundary layers to a singularly perturbed Klein–Gordon–Maxwell–Proca system on a compact Riemannian manifold with boundary

Author:

Clapp Mónica1,Ghimenti Marco2ORCID,Micheletti Anna Maria2

Affiliation:

1. Instituto de Matemáticas , Universidad Nacional Autónoma de México , Circuito Exterior, C.U., 04510 México City , Mexico

2. Dipartimento di Matematica Applicata , Università di Pisa , Via Buonarroti 1/c 56127 , Pisa , Italy

Abstract

Abstract We study the semiclassical limit to a singularly perturbed nonlinear Klein–Gordon–Maxwell–Proca system, with Neumann boundary conditions, on a Riemannian manifold 𝔐 {\mathfrak{M}} with boundary. We exhibit examples of manifolds, of arbitrary dimension, on which these systems have a solution which concentrates at a closed submanifold of the boundary of 𝔐 {\mathfrak{M}} , forming a positive layer, as the singular perturbation parameter goes to zero. Our results allow supercritical nonlinearities and apply, in particular, to bounded domains in N {\mathbb{R}^{N}} . Similar results are obtained for the more classical electrostatic Klein–Gordon–Maxwell system with appropriate boundary conditions.

Publisher

Walter de Gruyter GmbH

Subject

Analysis

Reference32 articles.

1. A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Klein–Gordon–Maxwell equations, Topol. Methods Nonlinear Anal. 35 (2010), no. 1, 33–42.

2. P. Baird and J. C. Wood, Harmonic Morphisms Between Riemannian Manifolds, London Math. Soc. Lecture (N. S.) 29, Oxford University Press, Oxford, 2003.

3. V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein–Gordon equation coupled with the Maxwell equations, Rev. Math. Phys. 14 (2002), no. 4, 409–420.

4. V. Benci and D. Fortunato, Solitary waves in classical field theory, Nonlinear Analysis and Applications to Physical Sciences (Pistoia 2002), Springer, Milan (2004), 1–50.

5. J. Byeon and J. Park, Singularly perturbed nonlinear elliptic problems on manifolds, Calc. Var. Partial Differential Equations 24 (2005), no. 4, 459–477.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3