A Model for the Maxwell Equations Coupled with Matter Based on Solitons

Author:

Benci Vieri

Abstract

We present a simple model of interaction of the Maxwell equations with a matter field defined by the Klein–Gordon equation. A simple linear interaction and a nonlinear perurbation produces solutions to the equations containing hylomorphic solitons, namely stable, solitary waves, whose existence is related to the ratio energy/charge. These solitons, at low energy, behave as poinwise charged particles in an electromagnetic field. The basic points are the following ones: (i) the matter field is described by the Nonlinear Klein–Gordon equation with a suitable nonlinear term; (ii) the interaction is not described by the equivariant derivative, but by a very simple coupling which preseves the invariance under the Poincaré group; (iii) the existence of soliton can be proved using the tecniques of nonlinear analysis and, in particular, the Mountain Pass Theorem; (iv) a suitable choice of the parameters produces solitons with a prescribed electric charge and mass/energy; (v) thanks to the point (ii), the dynamics of these solitons at low energies is the same of classical charged particles.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3