Epileptic EEG patterns recognition through machine learning techniques and relevant time–frequency features

Author:

Chaibi Sahbi12,Mahjoub Chahira1,Ayadi Wadhah2,Kachouri Abdennaceur1

Affiliation:

1. AFD2E Laboratory, National Engineering School , Sfax University , Sfax , Tunisia

2. Faculty of Sciences of Monastir , Monastir University , Monastir , Tunisia

Abstract

Abstract Objectives The present study is designed to explore the process of epileptic patterns’ automatic detection, specifically, epileptic spikes and high-frequency oscillations (HFOs), via a selection of machine learning (ML) techniques. The primary motivation for conducting such a research lies mainly in the need to investigate the long-term electroencephalography (EEG) recordings’ visual examination process, often considered as a time-consuming and potentially error-prone procedure, requiring a great deal of mental focus and highly experimented neurologists. On attempting to resolve such a challenge, a number of state-of-the-art ML algorithms have been evaluated and compare in terms of performance, to pinpoint the most effective algorithm fit for accurately extracting epileptic EEG patterns. Content Based on intracranial as well as simulated EEG data, the attained findings turn out to reveal that the randomforest (RF) method proved to be the most consistently effective approach, significantly outperforming the entirety of examined methods in terms of EEG recordings epileptic-pattern identification. Indeed, the RF classifier appeared to record an average balanced classification rate (BCR) of 92.38 % in regard to spikes recognition process, and 78.77 % in terms of HFOs detection. Summary Compared to other approaches, our results provide valuable insights into the RF classifier’s effectiveness as a powerful ML technique, fit for detecting EEG signals born epileptic bursts. Outlook As a potential future work, we envisage to further validate and sustain our major reached findings through incorporating a larger EEG dataset. We also aim to explore the generative adversarial networks (GANs) application so as to generate synthetic EEG signals or combine signal generation techniques with deep learning approaches. Through this new vein of thought, we actually preconize to enhance and boost the automated detection methods’ performance even more, thereby, noticeably enhancing the epileptic EEG pattern recognition area.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3