On Infinitely generated Fuchsian groups of the Loch Ness monster, the Cantor tree and the Blooming Cantor tree

Author:

Arredondo John A.1,Maluendas Camilo Ramírez2

Affiliation:

1. Fundación Universitaria Konrad Lorenz, CP. 110231, Bogotá, Colombia

2. Universidad Nacional de Colombia, Sede Manizales, Manizales, Colombia

Abstract

AbstractIn this paper, for a non-compact Riemman surface S homeomorphic to either: the Infinite Loch Ness monster, the Cantor tree and the Blooming Cantor tree, we give a precise description of an infinite set of generators of a Fuchsian group Γ < PSL(2, ℝ), such that the quotient space ℍ/Γ is a hyperbolic Riemann surface homeomorphic to S. For each one of these constructions, we exhibit a hyperbolic polygon with an infinite number of sides and give a collection of Mobius transformations identifying the sides in pairs.

Publisher

Walter de Gruyter GmbH

Subject

Geometry and Topology

Reference19 articles.

1. group of infinite genus surfaces no;Ramírez Maluendas;Geom Topol,2017

2. The geometry of discrete groups Graduate Texts in Mathematics vol Springer - Verlag New York;Alan,1983

3. Riemann Surfaces nd ed Graduate Texts in Mathematics Springer - Verlag New York;Farkas,1992

4. Leaves with isolated ends in foliated manifolds no;Cantwell;Topology,1977

5. Vorlesungen über Topologie Theory Applications;Béla;Mathematics,1923

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3