Dessins D’enfants and Some Holomorphic Structures on the Loch Ness Monster

Author:

Atarihuana Yasmina1,García Juan1,Hidalgo Rubén A2,Quispe Saúl2,Ramírez Maluendas Camilo3

Affiliation:

1. Facultad de Ciencias, Universidad Central del Ecuador, Quito 170129, Ecuador

2. Departamento de Matemática y Estadística, Universidad de La Frontera, Temuco 4780000, Chile

3. Departamento de Matemática y Estadística, Universidad Nacional de Colombia, Sede Manizales, Manizales 170004, Colombia

Abstract

Abstract The theory of dessins d’enfants on compact Riemann surfaces, which are bipartite maps on compact orientable surfaces, are combinatorial objects used to study branched covers between compact Riemann surfaces and the absolute Galois group of the field of rational numbers. In this paper, we show how this theory is naturally extended to non-compact orientable surfaces and, in particular, we observe that the Loch Ness monster (LNM; the surface of infinite genus with exactly one end) admits infinitely many regular dessins d’enfants (either chiral or reflexive). In addition, we study different holomorphic structures on the LNM, which come from homology covers of compact Riemann surfaces, and infinite hyperelliptic and infinite superelliptic curves.

Funder

FONDECYT

HERMES

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference30 articles.

1. On the infinite Loch Ness monster;Arredondo;Comment. Math. Univ. Carolin.,2017

2. On the topology of infinite regular and chiral maps;Arredondo;Discrete Math.,2017

3. On Infinitely generated Fuchsian groups of the Loch Ness monster, the Cantor tree and the Blooming Cantor tree;Arredondo;Comp. Man.,2020

4. On Galois extensions of a maximal cyclotomic field;Belyi;Mathematics of the USSR-Izvestiya,1980

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Big Mapping Class Groups and the Co-Hopfian Property;Michigan Mathematical Journal;2023-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3