Automation of a test bench for accessing the bendability of electrospun vascular grafts

Author:

Bensch Martin1,Müller Marc1,Bode Michael1,Glasmacher Birgit1

Affiliation:

1. 1Institute of Multiphase Processes, Leibniz Universität Hannover, Callinstr. 36, 30167 Hanover, Germany

Abstract

AbstractOne of the greatest challenges in cardiovascular tissue engineering is to develop vascular grafts with properties similar to autologous vessels. A promising approach is the fabrication of scaffolds from biodegradable polymers by electrospinning. Unstructured vascular subs possess a weak dimensional stability resulting in lumen collapse when subjected to bending stress. In order to examine different structured grafts, a standardised test method is required. A manual test method, designed in a former study, was adopted in terms of standardisation and automation. Therefore, a control system was programmed to regulate the required electronics. The electronic circuit was then developed and put into service. To fix samples into the test bench a new sample holder and a new collector for electrospinning were designed. Subsequently, a validation showed the new systems’ improved functionality compared to the former test bench. The samples were manufactured with the new collector. They could be fixed to the sample holder with high repeatability. The demand for vascular grafts with biological and mechanical properties similar to autologous vessels requires a standardised test method to examine bendability. The new test system enables the scaffolds to be examined regarding bendability with low personal expense and a simultaneously high degree of reproducibility. In addition, the new collector geometry can be easily adapted to higher or lower inner diameters. Hence, a new sample geometry was developed within this work.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3