Affiliation:
1. Leibniz University of Hannover, Institute for Multiphase Processes, Hannover - Germany
2. Institute for Technical Chemistry, Carolo Wilhelmina Technical University, Braunschweig - Germany
Abstract
Purpose As a technology for the production of micro- and nano structured scaffold materials, electro-spinning has gained widespread acceptance in the medical research community over the last decade. The process generates a non-woven fiber mat consisting of one continuous filament with diameters ranging from the micron to the nanometer range. Because of its similarity to the filamentous microenvironment in native tissues, it is most often used as scaffold material in tissue engineering applications. This similarity promotes a more positive cell response to the generated fibers than to bulk material alone. However, because current electrospinning equipment does not yet fully utilize the potential of the process technology, the reproducibility of the scaffold structure is often limited. It is thus the goal of this review to describe the current state of electrospinning process technology with respect to the design of artificial tissue structures. Method This review is based on a comprehensive examination conducted in 2007 and 2008 of patents filed with the European Patent Organization and other scientific publications. Results It describes selected technical developments in electrospinning related to the production of non-woven fiber scaffolds and their implications in the design of artificial tissue structures. Specifically, it describes techniques for the production of aligned fiber structures, multilayered, multiscaled and multifiber scaffolds, fiber modification and functionalization, and useful advances in process control. It also presents technical sketches showing in detail how to implement the techniques presented into electrospinning equipment setups. Finally, it discusses remaining limitations that pertain to the design of scaffold materials.
Subject
Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献