Lindelöf P-spaces need not be Sokolov

Author:

Tkachuk Vladimir V.1

Affiliation:

1. Departamento de Matemáticas Universidad Autónoma Metropolitana Av. San Rafael Atlixco, 186 Col. Vicentina, Iztapalapa Mexico City Mexico

Abstract

Abstract We show that for every Lindelöf P-space a weaker version of the Sokolov property holds. Besides, if K is a scattered Eberlein compact space and X is obtained from K by declaring open all Gδ -subsets of K, then X is monotonically Sokolov. The proof of this statement uses the fact that every Lindelöf subspace of a scattered Eberlein compact space must be σ-compact; this result seems to be interesting in itself. We also give an example of a Lindelöf P-space X such that Cp (X) has uncountable extent. In particular, neither X nor Cp (X) has the Sokolov property.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference13 articles.

1. Alster, K.: Some remarks on Eberlein compacta, Fund. Math. 104 (1979), 43–46.

2. Arhangel’skii, A. V.: Topological Function Spaces. Mathematics and Its Applications, No. 78, Kluwer Academic Publishers, Dordrecht, 1992.

3. Engelking, R.: General Topology, PWN, Warszawa, 1977.

4. Leiderman, A. G.: On Properties of Spaces of Continuous Functions. Cardinal Invariants and Mappings of Topological Spaces (in Russian), Izhevsk, 1984, pp. 50–54.

5. Rojas-Hernandez, R.—Tkachuk, V. V.: A monotone version of the Sokolov property and monotone retractability in function spaces, J. Math. Anal. Appl. 412 (2014), 125–137.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Distinguished Spaces $$C_p(X)$$ of Continuous Functions;Springer Proceedings in Mathematics & Statistics;2023

2. Pseudocompact $$\varDelta $$-spaces are often scattered;Monatshefte für Mathematik;2021-09-24

3. Basic properties of for which the space _{}() is distinguished;Proceedings of the American Mathematical Society, Series B;2021-09-21

4. Countably compact spaces admitting full r-skeletons are proximal;Topology and its Applications;2021-08

5. A nice subclass of functionally countable spaces;Commentationes Mathematicae Universitatis Carolinae;2018-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3