Basic properties of 𝑋 for which the space 𝐶_{𝑝}(𝑋) is distinguished

Author:

Ka̧kol Jerzy,Leiderman Arkady

Abstract

In our paper [Proc. Amer. Math. Soc. Ser. B 8 (2021), pp. 86–99] we showed that a Tychonoff space X X is a Δ \Delta -space (in the sense of R. W. Knight [Trans. Amer. Math. Soc. 339 (1993), pp. 45–60], G. M. Reed [Fund. Math. 110 (1980), pp. 145–152]) if and only if the locally convex space C p ( X ) C_{p}(X) is distinguished. Continuing this research, we investigate whether the class Δ \Delta of Δ \Delta -spaces is invariant under the basic topological operations.

We prove that if X Δ X \in \Delta and φ : X Y \varphi :X \to Y is a continuous surjection such that φ ( F ) \varphi (F) is an F σ F_{\sigma } -set in Y Y for every closed set F X F \subset X , then also Y Δ Y\in \Delta . As a consequence, if X X is a countable union of closed subspaces X i X_i such that each X i Δ X_i\in \Delta , then also X Δ X\in \Delta . In particular, σ \sigma -product of any family of scattered Eberlein compact spaces is a Δ \Delta -space and the product of a Δ \Delta -space with a countable space is a Δ \Delta -space. Our results give answers to several open problems posed by us [Proc. Amer. Math. Soc. Ser. B 8 (2021), pp. 86–99].

Let T : C p ( X ) C p ( Y ) T:C_p(X) \longrightarrow C_p(Y) be a continuous linear surjection. We observe that T T admits an extension to a linear continuous operator T ^ \widehat {T} from R X \mathbb {R}^X onto R Y \mathbb {R}^Y and deduce that Y Y is a Δ \Delta -space whenever X X is. Similarly, assuming that X X and Y Y are metrizable spaces, we show that Y Y is a Q Q -set whenever X X is.

Making use of obtained results, we provide a very short proof for the claim that every compact Δ \Delta -space has countable tightness. As a consequence, under Proper Forcing Axiom every compact Δ \Delta -space is sequential.

In the article we pose a dozen open questions.

Publisher

American Mathematical Society (AMS)

Subject

General Medicine

Reference35 articles.

1. A. V. Arkhangel’skii, Topological function spaces, Kluwer, Dordrecht, 1992.

2. A. V. Arkhangel’skii, 𝐶_{𝑝}-theory, Recent Progress in General Topology (Edited by M. Hušek and J. van Mill), Elsevier, Amsterdam, 1992, pp. 1–56.

3. Are Eberlein-Grothendieck scattered spaces 𝜎-discrete?;Avilés, Antonio;Rev. R. Acad. Cienc. Exactas F\'{\i}s. Nat. Ser. A Mat. RACSAM,2014

4. Function spaces of completely metrizable spaces;Baars, Jan;Trans. Amer. Math. Soc.,1993

5. On compact Hausdorff spaces of countable tightness;Balogh, Zoltán T.;Proc. Amer. Math. Soc.,1989

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Weakly web-compact Banach spaces C(X), and $$Lip_0(M)$$, $$\mathcal {F}(M)$$ over metric spaces M;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2024-03-21

2. Two Velichko-like Theorems for C(X);Mathematics;2023-12-12

3. Some classes of topological spaces extending the class of Δ-spaces;Proceedings of the American Mathematical Society;2023-11-29

4. Distinguished $$C_{p}\left( X\right) $$ spaces and the strongest locally convex topology;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2023-09-07

5. On Asplund Spaces $$C_k(X)$$ and $$w^{*}$$-Binormality;Results in Mathematics;2023-08-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3