Additive manufacturing and characterization of a stainless steel and a nickel alloy

Author:

Isik Murat1ORCID

Affiliation:

1. Automotive Engineering , Bursa Uludag University , Nilufer, Gorukle , Bursa , 16059 , Türkiye

Abstract

Abstract Recently, additive manufacturing is of interest, and there is a trend to study additively manufactured materials such as Inconel 718 and 316L stainless steel. Additive manufacturing brings the easiness of production of complex geometries, avoids expensive tools, helps achieve interesting microstructures and obtaining promising results for future applications. Since the additive procedure is sensitive to many fabrication variables thereby affecting the microstructure and mechanical properties. This motivation promotes investigating the additively manufactured microstructure of 316L stainless steel and Inconel 718. While 316L stainless steel was fabricated using an electron-based powder bed fusion manner, directed energy deposition was preferred for Inconel 718. Samples were examined utilizing optical and scanning electron microscopes. Results suggest processing of 316L stainless steel gives rise to the same porosity rate as Inconel 718. Bimodal equiaxed austenite grain morphology was observed whereas no dendrite presence was detected for 316L stainless steel. Additive manufacturing types do not cause a significant change in the level of porosity for Inconel 718 alloy. Unlike the case of stainless steel, additive manufacturing results in dendritic microstructure formation in Inconel 718 whereas powder bed fusion-type production triggers a better refinement compared to that of directed energy deposition.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3