Impact of N-(2-aminoethyl) Glycine Unit on Watson-Crick Base Pairs

Author:

Karunakaran Indumathi1,Angamuthu Abiram2,Gopalan Praveena3

Affiliation:

1. Department of Physics , PSGR Krishnammal College for Women , Coimbatore 641004, Tamilnadu , India

2. Department of Physics , Karunya Institute of Technology and Sciences , Coimbatore 641114, Tamilnadu , India

3. Department of Physics , PSGR Krishnammal College for Women , Coimbatore 641004, Tamilnadu , India , Tel.: +91-7812844344

Abstract

Abstract We aim to understand the structure and stability of the backbone tailored Watson-Crick base pairs, Guanine-Cytosine (GC), Adenine-Thymine (AT) and Adenine-Uracil (AU) by incorporating N-(2-aminoethyl) glycine units (linked by amide bonds) at the purine and pyrimidine sites of the nucleobases. Density functional theory (DFT) is employed in which B3LYP/6-311++G level of theory has been used to optimize all the structures. The peptide attached base pairs are compared with the natural deoxyribose nucleic acid (DNA)/ribonucleic acid (RNA) base pairs and the calculations are carried out in both the gas and solution phases. The structural propensities of the optimized base pairs are analyzed using base pair geometries, hydrogen bond distances and stabilization energies and, compared with the standard reference data. The structural parameters were found to correlate well with the available data. The addition of peptide chain at the back bone of the DNA/RNA base pairs results only with a minimal distortion and hence does not alter the structural configuration of the base pairs. Also enhanced stability of the base pairs is spotted while adding peptidic chain at the purine site rather than the pyrimidine site of the nucleobases. The stability of the complexes is further interpreted by considering the hydrogen bonded N–H stretching frequencies of the respective base pairs. The discrimination in the interaction energies observed in both gas and solution phases are resulted due to the existence of distinct lowest unoccupied molecular orbitals (LUMO) in the solution phase. The reactivity of the base pairs is also analyzed through the in-depth examinations on the highest occupied molecular orbital (HOMO)-LUMO orbitals.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3