Observation of Induced Luminescence and Thermochromism in Achiral Hydrogen Bonded Liquid Crystal Complexes

Author:

Ramya A.1,Balasubramanian V.2,Jayaprakasam R.3,Vijayakumar V. N.4

Affiliation:

1. Department of Physics, Condensed Matter Research Laboratory (CMRL), Bannari Amman Institute of Technology , Sathyamangalam , Tamil Nadu – 638401, India

2. Department of Science, Sona College of Technology , Salem , Tamil Nadu – 636005, India

3. Department of Chemistry, Bannari Amman Institute of Technology , Sathyamangalam , Tamil Nadu – 638401, India

4. Department of Physics, Condensed Matter Research Laboratory (CMRL), Bannari Amman Institute of Technology , Sathyamangalam , Tamil Nadu – 638401, India , Mobile: +91 9488021151

Abstract

Abstract A novel hydrogen bonded liquid crystal (HBLC) complexes are obtained from the non-mesogenic (benzylmalonic acid) and mesogenic (p-n-alkyloxybenzoic acid, where n = 6, 7 and 8) compound via intermolecular hydrogen bonds (H-bond). H-bonds are experimentally confirmed by the Fourier transform infrared spectroscopic (FT-IR) studies and the same is validated using density functional theory (DFT). Induced thermochromism is observed by the polarizing optical microscope (POM) and its possible applications are reported. Phase transition temperature and their analogous enthalpy values, stability factor and span width are determined by the differential scanning calorimetry (DSC) studies. Band gap energy is calculated using UV-visible and photoluminescence spectrum. Hyper conjugative stabilization energy and atomic charge distribution is studied by the natural bond orbital (NBO) studies. Mulliken analysis clearly reveals the intermolecular interaction and steric effect of the HBLC complexes. An interesting phenomenon is that the observation of luminescence and thermochromism in the highly fluidity nematic phase. This peculiar behavior is attributed due to the intermolecular H-bonding interaction between the BMA and nOBA compounds and the effect of rotatory motion of the molecules in nematic phase. Luminescence increases when the spacer moiety decreases in the present complexes is also reported. In nematic phase, the molecules are in different degrees of the excited state which is correlated with the hyper conjugative energy through NBO studies.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3