Affiliation:
1. Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel , Olshausenstraße 40 , D-24098 Kiel , Germany
Abstract
Abstract
Excited-state intramolecular proton transfers (ESIPT) are one of the fastest reactions in chemistry (<100 fs) which – among other features like high photostability – makes them an important reaction class for molecular switches. ESIPTs can be coupled with double bond rotation/isomerization, so that molecules can act as “molecular cranes”, facilitating long-range proton transfer. A versatile model system is 7-hydroxy-4-methylquinoline-8-carbaldehyde (HMQCA): it features two proton-accepting sites, two stable ground-state isomers and should allow for easy derivatization. There is also experimental and theoretical reference data available, however, only for static properties, e.g. ground-state IR spectra or potential energy surface scans. In this contribution we show the results of full-dimensional surface-hopping molecular dynamics (MD) of HMQCA after photo-excitation, employing semiempirical quantum mechanics coupled to floating-occupation configuration interaction. The results support the potential of HMQCA as prototype system for directed proton transport by ESIPT.
Subject
Physical and Theoretical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献